
LESSON 20 - STUDY GUIDE

Abstract. In this lesson we will look at the other side of the pointwise convergence of Fourier series,

when the partial sums either behave strangely or do not even converge at all. We will start with the

well known oscillation phenomenon that occurs in the neighborhood of jump discontinuities, called the
Wilbraham-Gibbs phenomenon or just Gibbs phenomenon. And in the second half of the lesson we

will concentrate on the pointwise divergence of Fourier series for continuous functions. We will finish

with a review of some of the most important results on almost everywhere convergence and divergence
of Fourier series of functions in Lp(T), including the celebrated theorem by Lennart Carleson on the

almost everywhere pointwise convergence of Fourier series for functions in L2(T).

1. Pointwise convergence of Fourier series: when things do not go so well.

Study material: For the first part, on the Gibbs phenomenon, I do my own presentation but Grafakos
[4] also has a section 3.5.4 - Gibbs Phenomenon covering the same topic, although with what I believe
is a slightly more complicated function and computations. For the second part of this lesson, on pointwise
divergence of Fourier series of continuous functions, I follow Katznelson, in the sections 2 - Convergence
and Divergence at a Point and 3 - Sets of Divergence, from chapter II - The Convergence of
Fourier Series, corresponding to pgs. 51–61 in the second edition [5] and pgs. 72–82 in the third edition
[6]. I also recall some functional analysis facts related to the Baire category theorem and the uniform
boundedness, or Banach-Steinhaus theorem, from Folland [3] or Rudin [7].

The results from the last lesson might have given the impression that Fourier series always converge
extremely well, at least for continuous functions. We had seen before, from Bernstein’s theorem in Lesson
18, that the Fourier series of Hölder-α continuous functions, for α > 1/2, converge absolutely. And in
the last lesson, we concluded, from Dini’s test, that for any α > 0 the Fourier series might not converge
absolutely but they still converge uniformly for all t ∈ T. These are, of course, extremely strong results.
Compared to Taylor series, for example, which require analyticity of the function for convergence and
equality to hold in a ball of convergence, Fourier series, on the other hand, require very little, and uniform
convergence on the whole domain holds for any functions with as small Hölder regularity as desired, many
of which are even nowhere differentiable.

We will see in this lesson that, in spite of these results, there is still plenty of room for things to go
wrong, even with continuous functions, let alone general L1(T) functions. We will see that there exist large
sets of continuous functions for which their Fourier series diverge on uncountable dense subsets of points
in T. In fact, for many decades, it was not even known whether there could exist continuous functions
whose Fourier series diverged at all points. There cannot, but this was only settled with Carleson’s proof
of the pointwise almost everywhere convergence of Fourier series for functions in L2(T), which of course
contain C(T).

For functions that are not continuous, even when pointwise converge holds at all points - for example
with f ∈ BV (T) - then necessarily the convergence is conditional and cannot be uniform, because uniform
convergence of continuous partial sums would necessarily imply a continuous limit. Not surprisingly,
things do go awry. At jump discontinuities, for example, where we know that the Fourier series converges
to the average of lateral limits at the jump, the partial sums nevertheless oscillate strongly in order
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to represent the jump. And because there is no uniform convergence, this oscillation never disappears,
exhibiting a ringing, or overshoot, phenomenon first discovered by Henry Wilbraham, in 1848, and then
independently in 1899 by J. Willard Gibbs, which typically carries the latter’s name. We will start this
lesson with it.

1.1. The Wilbraham-Gibbs phenomenon. The best model function to study the Wilbraham-Gibbs
phenomenon, usually known simply as the Gibbs phenomenon, is to investigate the convergence in a
neighborhood of the origin of the Fourier series associated to a Heaviside-type jump,

(1.1) f(t) =

{
−1 for − π < t < 0,

+1 for 0 ≤ t ≤ π.

This function is obviously of bounded variation, its total variation over T being 4, with two jump dis-
continuities at t = 0 and t = π, where the Fourier series necessarily converges to zero. Everywhere else
the Fourier series converges to the actual values of the function, 1 or −1, uniformly on compact subsets
of the intervals ]− π, 0[ and ]0, π[. Thus

∞∑
n=−∞

f̂(n)eint =


−1 for − π < t < 0,

+1 for 0 < t < π,

0 for t = 0, π.

Due to the Riemann localization principle, Proposition 1.8 in Lesson 19, the Fourier series of any piecewise
smooth function will exhibit the same behavior (with obvious rescaling and translation) at any of its jump
discontinuities as this example at t = 0.

So, writing the partial sums of the Fourier series of f in (1.1) as the convolution with the Dirichlet
kernel, we have

SN [f ](t) =

N∑
n=−N

f̂(n)eint = DN ∗ f(t) =
1

2π

∫ π

−π
DN (t− s)f(s)ds

=
1

2π

∫ π

0

DN (t− s)ds− 1

2π

∫ 0

−π
DN (t− s)ds

=
1

2π

∫ t

t−π
DN (s)ds− 1

2π

∫ t+π

t

DN (s)ds

=
1

2π

∫ −t+π
−t

DN (s)ds− 1

2π

∫ t+π

t

DN (s)ds

=
1

2π

∫ t

−t
DN (s)ds+

1

2π

∫ −t+π
t

DN (s)ds− 1

2π

∫ t+π

t

DN (s)ds

=
1

2π

∫ t

−t
DN (s)ds− 1

2π

∫ t+π

−t+π
DN (s)ds,

where we used the fact that the Dirichlet kernel is an even function, to perform these computations. We
then observe that the partial sums of the Fourier series of f consist of the difference of two integrals of
the Dirichlet kernel: one in a neighborhood of the origin s = 0, from s = −t to s = t, and the other in a
neighborhood of s = π, from s = π − t to s = π + t. The Dirichlet kernel, written as

DN (s) =
sin(N + 1

2 )s

sin s
2

,
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is only singular at the origin. So the second integral above, around s = π, can be easily shown to converge
to zero with the now usual oscillatory integral/Riemann-Lebesgue argument. In fact

1

2π

∫ π+t

π−t
DN (s)ds =

1

2π

∫ π+t

π−t

sin(N + 1
2 )s

sin s
2

ds

=
1

2π

∫
T

sin(N + 1
2 )s

sin s
2

χ[π−t,π+t](s)ds

=
1

2π

∫
T

sin(Ns)

tan s
2

χ[π−t,π+t](s)ds+
1

2π

∫
T

cos(Ns)χ[π−t,π+t](s)ds,

where χ[π−t,π+t] is the characteristic function of the interval [π − t, π + t]. So if we consider a compact

interval of values of t, say |t| ≤ π/2, then both 1
tan s

2
χ[π−t,π+t](s) and χ[π−t,π+t](s) form a compact family

of functions in L1(T) and, as discussed in the previous lesson for the pointwise convergence of the partial
sums of Fourier series with Dini’s test, the Riemann-Lebesgue lemma holds uniformly and therefore

1

2π

∫ π+t

π−t
DN (s)ds→ 0, as N →∞,

uniformly for |t| ≤ π/2. So,

SN [f ](t) =

N∑
n=−N

f̂(n)eint =
1

2π

∫ t

−t
DN (s)ds+ o(1) =

1

2π

∫ t

−t

sin(N + 1
2 )s

sin s
2

ds.

Again, also as we did in the last lesson, we replace the sin s
2 term in the denominator by s/2 by observing

that (
1

sin s
2

− 1
s
2

)
∈ L∞(T),

and thus

SN [f ](t) =

N∑
n=−N

f̂(n)eint =
1

2π

∫ t

−t

sin(N + 1
2 )s

s
2

ds

=
2

π

∫ t

0

sin(N + 1
2 )s

s
ds

=
2

π

∫ (N+ 1
2 )t

0

sin s

s
ds.

Observe now that the maximum value of this integral occurs at the first root of sin s, i.e. when (N+ 1
2 )t =

π, with value
2

π

∫ π

0

sin s

s
ds = 1, 089490 . . .

and we conclude that, at the jump discontinuity, there is an overshoot of the function of about 9% at the
first oscillation, on symmetric sides of the jump. And the only thing that happens, as N → ∞ is that
this first oscillation moves closer to the discontinuity, at a rate of t = π/(N + 1

2 ) but does not decrease
its height, let alone disappear. The following figures, for N = 5, 25 and 125 clearly illustrate how this
convergence evolves as N increases, in a classical example of pointwise convergence that is not uniform.
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Figure 1. N=5

Figure 2. N=25

Figure 3. N=125

1.2. Pointwise divergence of Fourier series of continuous functions. To see that there exist
plenty of continuous functions with divergent Fourier series we will use a powerful combination of explicit
estimates with a deep theorem of Functional Analysis: the uniform boundedness, or Banach-Steinhaus,
theorem.

Let us start by considering the sequence of linear functionals that take each function f ∈ C(T) to the
value of the Nth partial sum of its Fourier series at the origin:

f ∈ C(T) 7→ SN [f ](0) ∈ C.

As the partial sums are given by the convolution with the Dirichlet kernel, a simple convolution estimate
yields boundedness of each of these functionals

|SN [f ](0)| ≤ ‖SN [f ]‖L∞(T) = ‖DN ∗ f‖L∞(T) ≤ ‖DN‖L1(T)‖f‖L∞(T),

where, for continuous functions, ‖f‖L∞ = ‖f‖C(T) = supt∈T |f(t)|. So these linear functionals have
operator norms bounded by the Lebesgue constants

‖SN [·](0)‖C(T)→C ≤ ‖DN‖L1(T).
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We will now see that the norms are, not only bounded, but exactly equal to the Lebesgue constants
‖DN‖L1(T). In fact

|SN [f ](0)| = |DN ∗ f(0)| =
∣∣∣∣ 1

2π

∫
T
DN (−t)f(t)dt

∣∣∣∣ =

∣∣∣∣ 1

2π

∫
T
DN (t)f(t)dt

∣∣∣∣ ,
because DN is even. But, just as we did back in the lessons about Lp spaces and duality, we can now
take f ∈ L∞(T) of the form f(t) = sgnDN (t), i.e.

f(t) =


1 if DN (t) > 0

0 if DN (t) = 0

−1 if DN (t) < 0

This, of course, has unit norm ‖f‖L∞(T) = 1 and shows that the same linear functional on the slightly
larger domain L∞(T) does have operator norm equal to the Lebesgue constants

‖SN [·](0)‖L∞(T)→C = sup
‖f‖L∞(T)=1

|SN [f ](0)| = ‖DN‖L1(T).

It is now trivial to modify this function f at the finite points of jump discontinuities to make it continuous
(for example by transforming the sharp jumps into steep slopes) in order to make the integral above
arbitrarily close to ‖DN‖L1(T), by just using continuous functions f with supremum equal to one. We
thus obtain also

(1.2) ‖SN [·](0)‖C(T)→C = sup
‖f‖C(T)=‖f‖L∞(T)=1

|SN [f ](0)| = ‖DN‖L1(T).

At this point, we once again run into the importance of estimating the L1 norms of the Dirichlet kernel,
which was left as an exercise to show that

‖DN‖L1(T) =
4

π2
logN +O(1).

The unboundedness of these Lebesgue constants provided confirmation, a few lessons ago, that the
Dirichlet kernel is not an approximate identity. Now it shows us that, for each N , we can pick a
continuous function fN , with unit supremum, for which the corresponding partial sums of its Fourier
series satisfy

|SN [fN ](0)| ∼ 4

π2
logN.

These partial sums are unbounded, but as N changes so does the function fN . We would like to be able
to pick a single continuous function, for which all of its partial sums satisfy this same estimate, therefore
obtaining a function whose partial sums at t = 0 do not converge.

Such a function can be constructed explicitly by using the so-called gliding hump method. We’ll just
briefly sketch the idea, because we’ll use a another method right afterwards, based on Baire’s category
theorem and the Banach-Steinhaus theorem of functional analysis, that gives us a more general result.

So, because the Lebesgue constants are unbounded, for each l ∈ N we can chose an order Nl such that

‖SNl
[·](0)‖C(T)→C > 2l.

We explained above how to obtain continuous functions fNl
, with unit supremum, for which their partial

sums of order Nl satisfy this inequality at the origin. But because trigonometric polynomials are dense
in C(T) we can actually use a polynomial Pl in the place of fNl

, so that

|SNl
[Pl](0)| > 2l, with sup

t∈T
|Pl(t)| = 1.
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Clearly, degree(Pl) > Nl, for otherwise the partial sums of order Nl would coincide with the polyno-
mial itself and we would have |SNl

[Pl](0)| = |Pl(0)| ≤ 1, which would not satisfy the 2l lower bound.
The trigonometric polynomials have bounded support in the frequencies, with non-zero coefficients only
between −degree(Pl) and +degree(Pl). The goal then is to construct the final function by summing trans-
lates of each of these polynomials in frequency, so that their supports in Fourier space do not overlap.
We do that multiplying the polynomials by exponentials eiMlt, for which the support in frequency of

eiMltPl(t),

now sits between Ml−degree(Pl) and Ml+degree(Pl). And if we carefully pick the sequence of increasing
frequencies Ml, where the successive supports of the polynomials are centered, so that they do not overlap
- thus the gliding or sliding hump - then we obtain the desired function

f(t) =

∞∑
l=1

1

l2
eiMlt Pl(t).

This function is obviously continuous, and because the polynomials Pl have partial sums at the origin
bounded below by 2l, the partial sums of f are also unbounded at the origin and its Fourier series diverges.
The details can be found in Katznelson’s book, section 2 - Convergence and Divergence at a Point
from chapter II - The Convergence of Fourier Series, corresponding to pgs. 51–52 in the second
edition [5] and pgs. 72–74 in the third edition [6].

This was what could be called a hard analysis approach to constructing the example of a continuous
function whose Fourier series diverges at the origin. Let us now use a soft analysis argument which, in this
case, provides a much more general answer. It is based on the uniform boundedness, or Banach-Steinhaus
theorem, which in turn is usually proved as a consequence of the Baire category theorem. We recall both,
now (for details and proofs, see Folland’s book [3], section 5.3 - The Baire Category Theorem
and its Consequences from chapter 5 - Elements of Functional Analysis, or Rudin [7], section
Consequences of Baire’s Theorem from chapter 5 - Examples of Banach Space Techniques).

Theorem 1.1. (Baire) Let X be a complete metric space. If {On}n∈N is a countable collection of open
and dense subsets of X then ∩n∈NOn is dense in X.

The Baire category theorem is usually stated by saying that a complete metric space cannot be the
countable union of nowhere dense sets, which is just a consequence of the previous statement, by thinking
of the complements of the open sets. The advantage of stating it as above is that we have a more precise
description that what is left from the intersection of a countable collection of open dense sets is still a
dense set, a Gδ

1. We can even go further.

Corollary 1.2. In a complete metric space, the intersection of a countable collection of dense Gδ sets is
still a dense Gδ set.

From the Baire theorem, the uniform boundedness theorem for families of linear bounded operators
follows.

Theorem 1.3. (Banach-Steinhaus) Let X be a Banach space, Y a normed vector spaces and T any
set of bounded linear maps from X to Y . Then, either the collection T is uniformly bounded in their
operator norms,

sup
T∈T
‖T‖X→Y <∞

or there is a dense Gδ of points x ∈ X for which

sup
T∈T
‖Tx‖Y =∞.

1Recall that a Gδ set is a set obtained by the countable intersection of open sets.
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This theorem is also more typically stated as saying that, if the family T is pointwise bounded, i.e. if
for every x ∈ X there exists a constant Cx ≥ 0 such that

sup
T∈T
‖Tx‖Y ≤ Cx,

then the first alternative holds, and the collection T is uniformly bounded. Again, for us it is more useful
to state the theorem the way we did, because it describes more precisely what happens when a family of
bounded linear operators is not uniformly bounded: the pointwise bounds don’t just fail at one point,
but more dramatically, at a whole dense Gδ subset of points of X.

The way that these theorems can be applied to our search for continuous functions whose Fourier series
diverge at a point should now be obvious. From (1.2) we know that the operator norms of the partial
sums at the origin are not uniformly bounded, for they are equal to the Lebesgue constants ‖DN‖L1(T)
which grow as logN . Consequently, from the Banach-Steinhaus theorem above, there must exist a dense
Gδ set of continuous functions for which

sup
N
|SN [f ](0)| =∞,

and therefore whose partial sums at the origin diverge.
But we can expand this result even more. We now take any countable set of points {ti}i∈N in T

and repeat the above argument for each of them, thus obtaining for each one a Gδ dense subset of the
continuous functions Ei ⊂ C(T) whose Fourier series diverge at ti. And from Corollary 1.2 we conclude
that E = ∩iEi is still a Gδ dense subset of C(T) all of whose functions have Fourier series that diverge
at all points {ti}i∈N.

To finish this line of argument, we observe that, for each continuous f , the set of points where its
Fourier series diverges is also a Gδ subset of T because

{t ∈ T : sup
N
|SN [f ](t)| =∞} = ∩k{t ∈ T : sup

N
|SN [f ](t)| > k},

and the sets that make up the intersection are open in T. So if we pick the countable set of points {ti}i∈N
in T so that they are dense, for example by choosing them to be the rationals on the circle, than we
finally conclude with the very striking following result.

Theorem 1.4. (duBois Reymond) There exists a dense Gδ subset of continuous functions E ⊂ C(T)
such that each of its functions f ∈ E has a Fourier series that diverges on a dense Gδ subset of points of
T.

This result becomes even more impressive if we realize that none of these Gδ sets can be countable
because on complete metric spaces without isolated points, a countable set can never be a Gδ (see Rudin
[7]). We have thus proved the existence of an uncountable and dense set of continuous functions whose
Fourier series each diverge at uncountable dense sets of points of T.

So, despite the very positive results that we saw in the last lesson about the pointwise convergence,
even uniform, of Fourier series of continuous functions with as little Hölder regularity as desired, there are
still many continuous functions left, in fact uncountable dense sets of them, whose Fourier series diverge
at uncountable dense sets of points of the circle.

Yitzhak Katznelson, himself an expert on divergence of Fourier series, has a full section 3 - Sets of
Divergence from chapter II - The Convergence of Fourier Series in his book [5, 6] totally dedicated
to fine issues of pointwise divergence. Just for the sake of knowing the existence of some of these results,
let us review the most important of them very briefly, without getting into details or proofs. The main
concept is that of set of divergence of Lp(T) or C(T).



8 LESSON 20

Definition 1.5. A set E ⊂ T is called a set of divergence of one of the Banach spaces Lp(T) or C(T) if
there exists a function in this space for which the corresponding partial sums of the Fourier series diverge
at every point of E.

A first interesting fact is that countable unions of sets of divergence still form sets of divergence.

Theorem 1.6. Let Eii∈N be a countable collection of sets of divergence for one of the Banach spaces
Lp(T) or C(T). Then, E = ∪i∈NEi is a set of divergence.

In 1965, Jean-Pierre Kahane and Yitzhak Katznelson proved the following.

Theorem 1.7. (Kahane-Katznelson) Every set of Lebesgue measure zero in T is a set of divergence
for C(T).

So, given any zero measure set, it is always possible to pick a particular continuous function whose
Fourier series diverges at every point of that set.

Finally, the next theorem states a truly remarkable and surprising fact.

Theorem 1.8. (Kahane-Katznelson) For the Banach spaces Lp(T), 1 ≤ p ≤ ∞, or C(T), either the
whole circle T is a set of divergence, or the sets of divergence are just the sets of measure zero.

So, fixing each of the Lp(T) spaces, or C(T), one either finds functions with Fourier series that diverge
everywhere, or the Fourier series of all functions converge pointwise almost everywhere. There is no
intermediate situation, where there are functions whose Fourier series diverge on sets of positive measure,
but none that diverges everywhere.

Given this amazing subtlety of situations, it is no wonder that at the beginning of the twentieth
century, after some solid acquaintance had been developed with the newly created Lebesgue theory of
integration and many of these results had been proved, serious doubts were raised as to the pointwise
convergence of Fourier series of Lp(T) functions, and even continuous functions, that, for many years
throughout the nineteenth century were believed to hold everywhere.

In 1915, Nikolai Luzin conjectured that for functions in L2(T) their Fourier series would converge almost
everywhere, and this would obviously include continuous functions. But this remained an important open
problem for many years. In another surprising discovery, Kolmogorov, who had been Luzin’s PhD student,
proved in 1923 that there exist functions in L1(T) whose Fourier series diverge everywhere.

Theorem 1.9. (Kolmogorov) The whole circle T is a set of divergence for L1(T).

Luzin’s conjecture was famously settled only in 1965 by Lennart Carleson, and published in a paper the
following year [2], which also finally answered the analogous question for continuous functions, that had
remained unanswered until that point. In fact, Carleson has declared in interviews that he had initially
started working on the problem with the goal of finding a continuous function with an everywhere
divergent Fourier series, that people at that point were starting to believe to be the truth. And only
halfway through his work did he realize that he could actually prove the opposite fact.

Theorem 1.10. (Carleson [2]) Let f ∈ L2(T). Then the symmetric partial sums of its Fourier series∑N
−N f̂(n)eint converge pointwise almost everywhere t ∈ T to f(t) as N →∞.

Within a couple of years from Carleson’s proof, Richard Hunt extended it to any Lp(T), with p > 1.
And in 1973, Charles Fefferman provided a different proof of the pointwise almost everywhere convergence
of Fourier series of functions in Lp(T), with p > 1.

The proofs of the results, down to the construction of the L1(T) function with an everywhere divergent
Fourier series can all be found in Katnzelson’s book [5, 6]. Carleson’s proof is famous for being extremely
difficult and technical. For those interested in it, I suggest a monograph by Juan Arias de Reyna [1], that
he wrote after trying to understand Carlson’s proof. It is a detailed and mostly self contained analysis
of Carleson’s theorem and of the mathematical analysis tools associated with its proof.
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